Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.674
Filtrar
1.
BMC Biol ; 22(1): 78, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600550

RESUMEN

BACKGROUND: Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS: Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION: Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.


Asunto(s)
Epigenómica , Genes Esenciales , Animales , Ratones , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica
2.
Inflammation ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656456

RESUMEN

Ulcerative colitis (UC) is an idiopathic, relapsing inflammatory disorder of the colonic mucosa. Pyroptosis contributes significantly to UC. However, the molecular mechanisms of UC remain unexplained. Herein, using transcriptome data and animal experimental validation, we sought to explore pyroptosis-related molecular mechanisms, signature genes, and potential drugs in UC. Gene profiles (GSE48959, GSE59071, GSE53306, and GSE94648) were selected from the Gene Expression Omnibus (GEO) database, which contained samples derived from patients with active and inactive UC, as well as health controls. Gene Set Enrichment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on microarrays to unravel the association between UC and pyroptosis. Then, differential expressed genes (DEGs) and pyroptosis-related DEGs were obtained by differential expression analyses and the public database. Subsequently, pyroptosis-related DEGs and their association with the immune infiltration landscape were analyzed using the CIBERSORT method. Besides, potential signature genes were selected by machine learning (ML) algorithms, and then validated by testing datasets which included samples of colonic mucosal tissue and peripheral blood. More importantly, the potential drug was screened based on this. And these signature genes and the drug effect were finally observed in the animal experiment. GSEA and KEGG enrichment analyses on key module genes derived from WGCNA revealed a close association between UC and pyroptosis. Then, a total of 20 pyroptosis-related DEGs of UC and 27 pyroptosis-related DEGs of active UC were screened. Next, 6 candidate genes (ZBP1, AIM2, IL1ß, CASP1, TLR4, CASP11) in UC and 2 candidate genes (TLR4, CASP11) in active UC were respectively identified using the binary logistic regression (BLR), least absolute shrinkage and selection operator (LASSO), random forest (RF) analysis and artificial neural network (ANN), and these genes also showed high diagnostic specificity for UC in testing sets. Specially, TLR4 was elevated in UC and further elevated in active UC. The results of the drug screen revealed that six compounds (quercetin, cyclosporine, resveratrol, cisplatin, paclitaxel, rosiglitazone) could target TLR4, among which the effect of quercetin on intestinal pathology, pyroptosis and the expression of TLR4 in UC and active UC was further determined by the murine model. These findings demonstrated that pyroptosis may promote UC, and especially contributes to the activation of UC. Pyroptosis-related DEGs offer new ideas for the diagnosis of UC. Besides, quercetin was verified as an effective treatment for pyroptosis and intestinal inflammation. This study might enhance our comprehension on the pathogenic mechanism and diagnosis of UC and offer a treatment option for UC.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38656564

RESUMEN

PURPOSE: Undifferentiated carcinoma of the esophagus (UEC) is a rare malignancy. Deficiency in SMARCA genes, critical for chromatin regulation, has been observed in cases of UEC. Research in UEC is sparse, however, and we present a case series along with a comprehensive review of the literature. CASE SERIES: Case 1 is a 49-year-old female with abdominal pain and dysphagia and esophagogastroduodenoscopy (EGD) showing a friable mass at the gastroesophageal (GE) junction. Biopsies showed a poorly differentiated neoplasm and immunohistochemistry showed loss for SMARCA4. With metastatic disease, she agreed to undergo palliative chemotherapy and radiation, passing away at 4 months. Case 2 is an 88-year-old male with dysphagia, nausea, vomiting, and distal esophageal mass with biopsy showing a malignancy with loss of SMARCA4 expression. Due to extensive metastases, he was counseled on hospice care. Case 3 is a 53-year-old male with extensive alcohol and smoking history presenting with hematemesis, passing away shortly. Posthumous histopathology consistent with undifferentiated SMARCA4-deficient carcinoma of the esophagus. Results of the literature review indicate a predilection towards males (75.0%) and a variable age range (39-88 years). Majority (76.2%) reported with a distal esophagus location. Metastatic disease was common at initial presentation. Median survival was 2.60 months. Some were managed with chemotherapy and radiation. CONCLUSIONS: Research in SMARCA-deficient UEC is very limited. It is more common in men, age is variable, and associated with Barret's esophagus. Further research is necessary to better understand it and to establish treatment guidelines; however, it is clear that SMARCA4-deficient UEC carries a significantly poor prognosis.

4.
Biochem Genet ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656671

RESUMEN

Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.

5.
Mol Biotechnol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656728

RESUMEN

Acute respiratory distress syndrome (ARDS), a progressive status of acute lung injury (ALI), is primarily caused by an immune-mediated inflammatory disorder, which can be an acute pulmonary complication of rheumatoid arthritis (RA). As a chronic inflammatory disease regulated by the immune system, RA is closely associated with the occurrence and progression of respiratory diseases. However, it remains elusive whether there are shared genes between the molecular mechanisms underlying RA and ARDS. The objective of this study is to identify potential shared genes for further clinical drug discovery through integrated analysis of bulk RNA sequencing datasets obtained from the Gene Expression Omnibus database, employing differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA). The hub genes were identified through the intersection of common DEGs and WGCNA-derived genes. The Random Forest (RF) and least absolute shrinkage and selection operator (LASSO) algorithms were subsequently employed to identify key shared target genes associated with two diseases. Additionally, RA immune infiltration analysis and COVID-19 single-cell transcriptome analysis revealed the correlation between these key genes and immune cells. A total of 59 shared genes were identified from the intersection of DEGs and gene clusters obtained through WGCNA, which analyzed the integrated gene matrix of ALI/ARDS and RA. The RF and LASSO algorithms were employed to screen for target genes specific to ALI/ARDS and RA, respectively. The final set of overlapping genes (FCMR, ADAM28, HK3, GRB10, UBE2J1, HPSE, DDX24, BATF, and CST7) all exhibited a strong predictive effect with an area under the curve (AUC) value greater than 0.8. Then, the immune infiltration analysis revealed a strong correlation between UBE2J1 and plasma cells in RA. Furthermore, scRNA-seq analysis demonstrated differential expression of these nine target genes primarily in T cells and NK cells, with CST7 showing a significant positive correlation specifically with NK cells. Beyond that, transcriptome sequencing was conducted on lung tissue collected from ALI mice, confirming the substantial differential expression of FCMR, HK3, UBE2J1, and BATF. This study provides unprecedented evidence linking the pathophysiological mechanisms of ALI/ARDS and RA to immune regulation, which offers novel understanding for future clinical treatment and experimental research.

6.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565017

RESUMEN

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Asunto(s)
Antibacterianos , Cadena Alimentaria , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Oxitetraciclina/toxicidad , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Polipropilenos , Carpa Dorada/genética , Carpa Dorada/metabolismo , Penaeidae/microbiología , Penaeidae/efectos de los fármacos , Muramidasa/metabolismo
7.
J Hazard Mater ; 470: 133740, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569335

RESUMEN

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Asunto(s)
Antibacterianos , Biodegradación Ambiental , Microbiota , Norfloxacino , Contaminantes Químicos del Agua , Humedales , Antibacterianos/farmacología , Contaminantes Químicos del Agua/metabolismo , Norfloxacino/farmacología , Microbiota/efectos de los fármacos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Farmacorresistencia Microbiana/genética , Ofloxacino , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Genes Bacterianos , Fluoroquinolonas/metabolismo
8.
J Hazard Mater ; 470: 134176, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569347

RESUMEN

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Asunto(s)
Biodegradación Ambiental , Microbiota , Microplásticos , Poliésteres , Microbiología del Suelo , Contaminantes del Suelo , Poliésteres/metabolismo , Poliésteres/química , Microplásticos/toxicidad , Contaminantes del Suelo/metabolismo , Polietileno/química , Carbono/química , Plásticos Biodegradables/química , Bacterias/metabolismo , Bacterias/genética , Suelo/química
10.
Genes Brain Behav ; 23(2): e12896, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662955

RESUMEN

Gastroesophageal reflux disease (GERD) is associated with sleep disturbances. However, mechanisms underlying these interactions remain unclear. Male acute and chronic sleep deprivation (SD) mice were used for this study. Mice in the chronic SD group exhibited anxiety- and depression-like behaviors. We further performed high-throughput genome sequencing and bioinformatics analysis to screen for featured differentially expressed genes (DEGs) in the esophageal tissue. The acute SD group, comprised 25 DEGs including 14 downregulated and 11 upregulated genes. Compared with the acute SD group, more DEGs were present in the chronic SD group, with a total of 169 DEGs, including 88 downregulated and 81 upregulated genes. Some DEGs that were closely related to GERD and associated esophageal diseases were significantly different in the chronic SD group. Quantitative real-time polymerase chain reaction verified the downregulation of Krt4, Krt13, Krt15 and Calml3 and upregulation of Baxl1 and Per3. Notably, these DEGs are involved in biological processes, which might be the pathways of the neuroregulatory mechanisms of DEGs expression.


Asunto(s)
Esófago , Privación de Sueño , Animales , Masculino , Privación de Sueño/genética , Privación de Sueño/metabolismo , Ratones , Esófago/metabolismo , Reflujo Gastroesofágico/genética , Reflujo Gastroesofágico/metabolismo , Ratones Endogámicos C57BL , Transcriptoma , Depresión/genética , Depresión/metabolismo
11.
Genomics ; : 110848, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663523

RESUMEN

Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study provides fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.

12.
Sci Total Environ ; : 172715, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663595

RESUMEN

Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined effects of different concentration of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(ß-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs form sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.

13.
Neurobiol Dis ; : 106514, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663633

RESUMEN

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.

14.
Semin Cell Dev Biol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38664120

RESUMEN

Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.

15.
Sci Rep ; 14(1): 9516, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664448

RESUMEN

Recent technologies such as spatial transcriptomics, enable the measurement of gene expressions at the single-cell level along with the spatial locations of these cells in the tissue. Spatial clustering of the cells provides valuable insights into the understanding of the functional organization of the tissue. However, most such clustering methods involve some dimension reduction that leads to a loss of the inherent dependency structure among genes at any spatial location in the tissue. This destroys valuable insights of gene co-expression patterns apart from possibly impacting spatial clustering performance. In spatial transcriptomics, the matrix-variate gene expression data, along with spatial coordinates of the single cells, provides information on both gene expression dependencies and cell spatial dependencies through its row and column covariances. In this work, we propose a joint Bayesian approach to simultaneously estimate these gene and spatial cell correlations. These estimates provide data summaries for downstream analyses. We illustrate our method with simulations and analysis of several real spatial transcriptomic datasets. Our work elucidates gene co-expression networks as well as clear spatial clustering patterns of the cells. Furthermore, our analysis reveals that downstream spatial-differential analysis may aid in the discovery of unknown cell types from known marker genes.


Asunto(s)
Teorema de Bayes , Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Análisis por Conglomerados , Humanos , Análisis de la Célula Individual/métodos , Redes Reguladoras de Genes , Algoritmos , Simulación por Computador
16.
Anim Biosci ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38665081

RESUMEN

Objective: Increasing breast meat production is one of the primary goals of the broiler industry. Over the past few decades, tremendous progress has been made in genetic selection and the identification of candidate genes for improving the breast muscle mass. However, the molecular network contributing to muscle production traits in chickens still needs to be further illuminated. Methods: A total of 150 1-day-old male 817 broilers were reared in a floor litter system. At the market age of 50 d, eighteen healthy 817 broilers were slaughtered and the left pectoralis major muscle sample from each bird was collected for RNA-seq sequencing. The birds were then plucked and eviscerated and the whole breast muscle was removed and weighed. Breast muscle yield was calculated as the ratio of the breast muscle weight to the eviscerated weight. To identify the co-expression networks and hub genes contributing to breast muscle yield in chickens, we performed weighted gene co-expression network analysis (WGCNA) based on the 18 transcriptome datasets of pectoralis major muscle from eighteen 817 broilers. Results: The WGCNA analysis classified all co-expressed genes in the pectoral muscle of 817 broilers into 44 modules. Among these modules, the turquoise and skyblue3 modules were found to be most significantly positively (r=0.78, p=1e-04) and negatively (r=-0.57, p=0.01) associated with breast meat yield, respectively. Further analysis identified several hub genes (e.g., DLX3, SH3RF2, TPM1, CAV3, MYF6, and CFL2) that involved in muscle structure and muscle development were identified as potential regulators of breast meat production. Conclusion: The present study has advanced our understanding of the molecular regulatory networks contributing to muscle growth and breast muscle production and will contribute to the molecular breeding of chickens in the future.

17.
Alzheimers Dement (Amst) ; 16(2): e12580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623383

RESUMEN

Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aß) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aß, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.

18.
Clin Transl Immunology ; 13(4): e1503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623540

RESUMEN

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods: Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results: ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion: Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.

19.
Beilstein J Org Chem ; 20: 753-766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633912

RESUMEN

Secondary metabolites produced by actinomycete strains undoubtedly have great potential for use in applied research areas such as drug discovery. However, it is becoming difficult to obtain novel compounds because of repeated isolation around the world. Therefore, a new strategy for discovering novel secondary metabolites is needed. Many researchers believe that actinomycetes have as yet unanalyzed secondary metabolic activities, and the associated undiscovered secondary metabolite biosynthesis genes are called "silent" genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38634039

RESUMEN

Background: Distant metastasis remains the leading cause of death among patients with breast cancer (BRCA). The process of cancer metastasis involves multiple mechanisms, including compromised immune system. However, not all genes involved in immune function have been comprehensively identified. Methods: Firstly 1623 BRCA samples, including transcriptome sequencing and clinical information, were acquired from Gene Expression Omnibus (GSE102818, GSE45255, GSE86166) and The Cancer Genome Atlas-BRCA (TCGA-BRCA) dataset. Subsequently, weighted gene co-expression network analysis (WGCNA) was performed using the GSE102818 dataset to identify the most relevant module to the metastasis of BRCA. Besides, ConsensusClusterPlus was applied to divide TCGA-BRCA patients into two subgroups (G1 and G2). In the meantime, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a metastasis-related immune genes (MRIGs)_score to predict the metastasis and progression of cancer. Importantly, the expression of vital genes was validated through reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Results: The expression pattern of 76 MRIGs screened by WGCNA divided TCGA-BRCA patients into two subgroups (G1 and G2), and the prognosis of G1 group was worse. Also, G1 exhibited a higher mRNA expression level based on stemness index score and Tumor Immune Dysfunction and Exclusion score. In addition, higher MRIGs_score represented the higher probability of progression in BRCA patients. It was worth mentioning that the patients in the G1 group had a high MRIGs_score than those in the G2 group. Importantly, the results of RT-qPCR and IHC demonstrated that fasciculation and elongation protein zeta 1 (FEZ1) and insulin-like growth factor 2 receptor (IGF2R) were risk factors, while interleukin (IL)-1 receptor antagonist (IL1RN) was a protective factor. Conclusion: Our study revealed a prognostic model composed of eight immune related genes that could predict the metastasis and progression of BRCA. Higher score represented higher metastasis probability. Besides, the consistency of key genes in BRCA tissue and bioinformatics analysis results from mRNA and protein levels was verified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...